Сверхпроводимость Ядерные силы Деление ядер m Элементарные частицы Кварки Поляризация диэлектриков Применение закона Ампера Соединение конденсаторов Кинематика Фотонный газ Постулаты Бора

Квантовая физика Кинематика Ядерная физика

Молекулярные спектры.

Молекула является квантовой системой; она описывается уравнением Шредингера, учитывающим движение электронов в молекуле, колебания атомов молекулы, вращение молекулы. Решение этого уравнения - очень сложная задача, которая обычно разбивается на две: для электронов и ядер.

Для приближенного решения задачи используют адиабатическое приближение, согласно которому квантово-механическая система разделяется на тяжелые и легкие частицы — ядра и электроны. Так как массы и скорости этих частиц сильно различаются, то считается, что движение электронов происходит в поле неподвижных ядер, а медленно движущиеся ядра находятся в усредненном поле электронов. Следовательно, в адиабатическом приближении уравнение Шредингера для молекулы распадается на два уравнения — для электронов и ядер.

Из решения уравнения Шредингера для молекул водорода при указанных выше предположениях получается зависимость собственных значений энергии от расстояния R между ядрами, т. е. Е = E(R).

Энергия молекулы

Е ≈ Еэл + Екол + Евращ,

(13.45)

где Еэл — энергия движения электронов относительно ядер; Екол — энергия колебаний ядер (в результате которых периодически изменяется относительное положение ядер); Евращ — энергия вращения ядер (в результате которых периодически изменяется ориентация молекулы в пространстве). Формулы Рэлея — Джинса и Планка Из рассмотрения законов Стефана — Больцмана и Вина следует, что термодинамический подход к решению задача о нахождении универсальной функции Кирхгофа rn,T не дал желаемых результатов. Следующая строгая попытка теоретического вывода зависимости rn,T принадлежит английским ученым Д. Рэлею и Д. Джинсу (1877—1946), которые применили к тепловому излучению методы статистической физики, воспользовавшись классическим законом равномерного распределения энергии по степеням свободы.

В формуле (13.45) не учтены энергия поступательного движения центра масс молекул и энергия ядер атомов в молекуле. Первая из них не квантуется, поэтому ее изменения не могут привести к возникновению молекулярного спектра, а вторую можно не учитывать, если не рассматривать сверхтонкую структуру спектральных линий.

Доказано, что Еэл >> Екол >> Евращ, при этом Еэл ≈ 1 – 10 эВ. Каждая из входящих в выражение (13.45) энергий квантуется и им соответствует набор дискретных уровней энергии. При переходе из одного энергетического состояния в другое поглощается или испускается энергия ΔЕ = hν. Из теории и эксперимента следует, что расстояние между вращательными уровнями энергии Δ Евращ гораздо меньше расстояния между колебательными уровнями Δ Екол, которое, в свою очередь, меньше расстояния между электронными уровнями Δ Еэл. На рис. 13.9 схематически представлены уровни энергии двухатомной молекулы (для примера рассмотрены только два электронных уровня — показаны жирными линиями).

Рис. 13.9.

Строение молекул и свойства их энергетических уровней проявляются в молекулярных спектрах - спектрах излучения (поглощения), возникающих при квантовых переходах между уровнями энергии молекул. Спектр излучения молекулы определяется структурой ее энергетических уровней и соответствующими правилами отбора (например, изменение квантовых чисел, соответствующих как колебательному, так и вращательному движению, должно быть равно ± 1). При разных типах переходов между уровнями возникают различные типы молекулярных спектров. Частоты спектральных линий, испускаемых молекулами, могут соответствовать переходам с одного электронною уровня на другой (электронные спектры) или с одного колебательного (вращательного) уровня на другой [колебательные (вращательные) спектры].

Кроме того, возможны и переходы с одними значениями Екол и Евращ на уровни, имеющие другие значения всех трех компонентов, в результате чего возникают электронно-колебательные и колебательно-вращательные спектры. Поэтому спектр молекул довольно сложный.

Типичные молекулярные спектры - полосатые, представляют собой совокупность более или менее узких полос в ультрафиолетовой, видимой и инфракрасной областях. Применяя спектральные приборы высокой разрешающей способности, можно видеть, что полосы представляют собой настолько тесно расположенные линии, что они с трудом разрешаются.

Структура молекулярных спектров различна для разных молекул и с увеличением числа атомов в молекуле усложняется (наблюдаются лишь сплошные широкие полосы). Колебательными и вращательными спектрами обладают только многоатомные молекулы, а двухатомные их не имеют. Это объясняется тем, что двухатомные молекулы не имеют дипольных моментов (при колебательных и вращательных переходах отсутствует изменение дипольного момента, что является необходимым условием отличия от нуля вероятности перехода).

 Молекулярные спектры применяются для исследования строения и свойств молекул, используются в молекулярном спектральном анализе, лазерной спектроскопии, квантовой электронике и т.д.

80. Период полураспада изотопа углерода 14С6 5730 лет. За какое время активность этого изотопа уменьшится на 40%.

81. Вычислить энергию ядерной реакции:

 3He2 + 1n0 ® 3H1 + 1p1

82. Вычислить энергию ядерной реакции:

 27Al13 + 1n0® 27Mg12 + 1p1

83. Вычислить энергию ядерной реакции:

 33 S16 + 1n0® 33P15 + 1p1

84. Вычислить энергию ядерной реакции:

 2H1 + 7Li3 ®2 4He2 + 1n0

85. Вычислить энергию термоядерной реакции:

 3H1 +2H1 ® 4He2 + 1n0

 86. В какой элемент превращается 238U92 после трех a - распадов и двух b--превращений?

87. Вычислить дефект массы, энергию связи и удельную энергию связи для элемента 108Ag47.

88. Вычислить дефект массы, энергию связи и удельную энергию связи для элемента 24 Мg12.

89. Радиоактивное ядро, состоящее из 5 протонов и 5 нейтронов выбросило a - частицу. Какое ядро образовалось в результате a - распада? Определить дефект массы и энергию связи образовавшегося ядра.

90. Радиоактивное ядро, состоящее из 92 протонов и 143 нейтронов выбросило a - частицу. Какое ядро образовалось в результате a - распада?


Характеристические рентгеновские спектры