Сверхпроводимость Ядерные силы Деление ядер m Элементарные частицы Кварки Поляризация диэлектриков Применение закона Ампера Соединение конденсаторов Кинематика Фотонный газ Постулаты Бора

Квантовая физика Кинематика Ядерная физика

Результирующий механический момент многоэлектронного атома.

Как показывает расчет, суммарный орбитальный момент системы определяется выражением

(13.34)

где L — орбитальное квантовое число результирующего момента. В случае системы из двух частиц с орбитальными моментами l1 и l2 квантовое число L — целое, положительное — может иметь следующие значения:

L = (l1 + l2), (l1 + l2 - 1), ..., |l1 - l2|.

(13.35)

Отсюда следует, что L (а значит и результирующий момент) может иметь 2 l1 + 1 или 2 l2 + 1 различных значений (нужно взять меньшее из двух значений l). Если система состоит не из двух, а из многих частиц, то квантовое число L, определяющее результирующий орбитальный момент, находится путем последовательного применения правила (13.35).

Проекция результирующего орбитального момента на некоторое направление Z определяется аналогично (13.27): Электростатическое поле бесконечно длинного прямого равномерно заряженного цилиндра. Рассмотрим цилиндр радиусом R, равномерно заряженный с линейной плотностью +t (это, конечно же, может быть электрический кабель). Из условия симметрии следует, что силовые линии лежат в плоскостях, перпендикулярных к образующей цилиндра, и направлены радиально от оси цилиндра (рис.16.14), причем, во всех точках, равноудаленных от оси цилиндра, как электрические смещения D, так и напряженности поля Е одинаковы.

Mz = ћmL, mL=0, ±1, ±2, …, ± L.

(13.36)

Подобным же образом определяется и суммарный спиновый момент системы:

(13.37)

где квантовое число S результирующего спинового момента может быть целым или полуцелым — в зависимости от числа частиц — четного или нечетного. Если число N частиц четное, то S = Ns, Ns - 1, ..., 0, где s = 1/2, т. е. в этом случае S — целые числа. Если же число N частиц нечетное, то S принимает все полуцелые значения от Ns до s, где s = 1/2.

Нормальная и jj- связи. Каждый электрон в многоэлектронном атоме характеризуется орбитальным Ml и собственным моментом Ms. Моменты Ml и Ms складываются в результирующий момент атома Mj. При этом возможны два случая.

1. Моменты Ml взаимодействуют между собой сильнее, чем с Ms, которые в свою очередь сильнее связаны друг с другом, чем с Ml. Вследствие этого все Ml складываются в результирующую ML, моменты Ms складываются в MS, а затем уже ML и Ms дают суммарный момент атома МJ. Такой вид взаимодействия называется нормальной связью или связью Рёссель-Саундерса.

2. Каждая пара Ml и Ms взаимодействует между собой сильнее, чем с другими Ml и Ms, вследствие чего образуются результирующие Мj для каждого электрона в отдельности, которые затем уже объединяются в МJ атома. Такой вид связи, называемый j-j связью.

Наиболее важной и распространенной является нормальная связь. Такой вид связи, как правило, присущ легким и не слишком тяжелым атомам, для которых суммарный момент MJ атома определяется как:

(13.38)

где квантовое число J полного момента может иметь одно из следующих значений:

J = L + S, L + S – 1, …, |L – S|.

Значит, J будет целым, если S целое ( т. е. при четном числе электронов) или полуцелым, если S полуцелое (при нечетном числе электронов).

Однако нормальная связь - Это только один из крайних случаев связи. Другой крайний случай —j-j связь, когда спин-орбитальное взаимодействие у каждого электрона оказывается основным. Такая связь встречается у тяжелых атомов, но достаточно редко. В основном же осуществляются более сложные промежуточные виды связи.

Спектральные обозначения. В случае нормальной связи термы принято обозначать символами, подобными (13.30):

v(L)J,

(13.39)

где v = 2S + 1 — мультиплетность, J — квантовое число полного момента. Отличие с обозначением (13.30) лишь в том, что малые буквы s и j заменены на соответствующие большие S и J. Следует отметить, что мультиплетность v дает количество подуровней только в случае S < L (в случае же S > L, число подуровней равно 2L + 1).

Правила отбора. При рассмотрении внешнего электрона в атомах щелочных металлов было отмечено, что не все переходы между термами возможны. Возможны только те, которые подчиняются правилам отбора (13.22) и (13.31).

При переходе к сложным атомам правила отбора необходимо уточнить. Эмпирически было установлено, что при нормальной связи правила отбора для квантовых чисел L, S и J таковы:

ΔL = 0, ±1.

(13.40)

ΔS = 0.

(13.41)

ΔJ = 0, ±1.

(13.42)

При этом, однако, переход J = 0 → J = 0 запрещен.

Указанные правила отбора обоснованы квантовой теорией и не всегда являются достаточно жесткими. Cуть этих правил в том, что только при таких изменениях квантовых чисел L, S, J вероятность переходов является существенной.

Явление Комптона – рассеяние рентгеновского кванта на «свободном» электроне.

1. Физическая сущность

Рассеивающее вещество – бериллий, литий, бор. Рентгеновский спектрограф.

В рассеянных лучах длина волны λ’

Δλ=λ’ – λ – Комптоновское смещение

Δλ=λk(1 – Cosϑ )

λk=2,4*10-12 м равно к. смещению при рассеянии на угол ϑ=Pi/2

2. Элементарная теория комптоновского эффекта

Выполняется закон сохранения энергии

hυ + m0C2 = hυ’ + mC2

нет рассеяния когда фотон(рентгеновский квант) попадает в ядро или в электрон тесно связанный с ядром, тк длина волны не меняется.

Система:

{hυ + m0C2 = hυ’ + mC2

P=P’+mV (P,V - векторные)}

{mC2 = h(υ - υ’) + m0C2

m2V2=(hυ/C)2+(hυ’/C)2 - h2υυ’ Cosϑ /C2}

{m2C4= m02C4 + 2h(υ-υ’)m0C2 + h2υ2 + h2υ’2 - 2h2υυ’

m2V2C2= h2υ2 + h2υ’2 - 2h2υυ’ Cosϑ}

m2C4(1 – V2/C2)= m02C4 + 2h(υ-υ’)m0C2- 2h2υυ’+ 2h2υυ’ Cosϑ

m= m0/sqr(1 – V2/C2) => m2(1 – V2/C2)= m02

m0C22h(c/λ - c/λ’) = 2h2(c/λ)(c/λ’) - 2h2(c/λ)(c/λ’)Cosϑ

m0C2C(λ’ - λ)/λ’λ = hC2/λλ’ - hC2 Cosϑ/λλ’

Δλm0C=h(1 – Cosϑ)

Δλ = h(1 – Cosϑ)/ m0C

λk = h/ m0C = 2,4*10-12 м

3. Выводы

Таблица:

Квант:

До соударения E= hυ, P= hυ/C

После соударения E= hυ’, P= hυ’/C

Электрон:

До соударения E= m0C2, P= 0

После соударения E= mC2, P= mV

при рассеянии квантов рентгеновского излучения на свободном ??? электроне в рассеянном излучении вместе с компонентами λ появляется компонента λ’>λ

комптоновское смещение Δλ = λ’ – λ зависит только от угла расстояния ϑ, ϑ ~ Δλ

комптоновское смещение одинаково для всех рассеивающих элементов и не зависит от длины волны излучения

интенсивность рассеянной комп убывает с возрастанием 2-рассеивающего вещества.


Характеристические рентгеновские спектры