Квантовая гипотеза Планка Волновая функция и измерения Интегралы движения Туннельный эффект Расщепление спектральных линий в магнитном поле Сферические волны Теория столкновений

Квантовая физика Кинематика Ядерная физика

Фотопроводимость полупроводников. Экситоны

Увеличение электропроводности полупроводников может быть обусловлено не только тепловым возбуждением носителей тока, но и под действием электромагнитного излучения. В таком случае говорят о фотопроводимости полупроводников. Фотопроводимость полупроводников может быть связана со свойствами как основного вещества, так и содержащихся в нем примесей. В первом случае при поглощении фотонов, соответствующих собственной полосе поглощения полупроводника т. е. когда энергия фотонов равна или больше ширины запрещенной зоны (hν ≥ ∆E), могут совершаться перебросы электронов из валентной зоны в зону проводимости (рис. 15.10, а), что приведет к появлению добавочных (неравновесных) электронов (в зоне проводимости) и дырок {в валентной зоне). В результате возникает собственная фотопроводимость, обусловленная электронами и дырками.

Если полупроводник содержит примеси, то фотопроводимость может

Рис. 15.10.

возникать и при hν < ∆E: для полупроводников с донорной примесью фотон должен обладать энергией hν ≥ ∆ED, а для полупроводников с акцепторной примесью hν ≥ ∆EA. При поглощении света примесными центрами происходит переход электронов с донорных уровней в зону проводимости в случае полупроводника n-типа (рис. 15.10, б) или из валентной зоны на акцепторные уровни в случае полупроводника р-типа (рис. 15.10, в). В результате возникает примесная фотопроводимость, являющаяся чисто электронной для полупроводников n-типа и чисто дырочной для полупроводников р-типа.

Из условия hν = hc/λ можно определить красную границу фотопроводимости — максимальную длину волны, при которой еще фотопроводимость возбуждается:

для собственных полупроводников

λ0 = hc/∆E

(15.7)

для примесных полупроводников

λ0 = hc/∆Eп

(15.8)

(∆Eп - в общем случае энергия активации примесных атомов).

Учитывая значения ∆E и ∆Eп для конкретных полупроводников, можно показать, что красная граница фотопроводимости для собственных полупроводников приходится на видимую область спектра, для примесных же полупроводников - на инфракрасную.

Тепловое или электромагнитное возбуждение электронов и дырок может и не сопровождаться увеличением электропроводности. Одним из таких механизмов может быть механизм возникновения экситонов. Экситоны представляют собой квазичастицы — электрически нейтральные связанные состояния электрона и дырки, образующиеся в случае возбуждения с энергией, меньшей ширины запрещенной зоны. Уровни энергии экситонов располагаются у дна зоны проводимости. Так как экситоны электрически нейтральны, то их возникновение в полупроводнике не приводит к появлению дополнительных носителей тока, вследствие чего экситонное поглощение света не сопровождается увеличением фотопроводимости.

Принцип суперпозиции (наложения) волн.

Если в среде распространяется несколько волн, они перемещаются независимо друг от друга.

S = C1S1 + C2S2

S= ∑CnSn

Среда линейная (свойства не меняются под воздействием распространяющихся волн)

Волны взаимно независимы.

Смещение – геометрическая сумма смещений, возникших в отдельных волновых процессах.

4)Волновой пакет

- Суперпозиция волн, мало отличающихся по частоте и занимающая определенный объем в пространстве.

Волновой пакет:

Везде кроме ∆x A=0

Плоская монохроматическая волна – идеализированный объект:

В реальности мы имеем дело с волновыми пакетами.

S1=A0Cos(ωt –kx)

S2= A0Cos((ω+dω)t –(k+dk)x)

dω << ω

dk << k

S = S1 + S2 = 2A0Cos ((dωt – dkx)/2)Cos(ωt –kx)

Здесь 2A0Cos ((dωt – dkx)/2) – амплитуда (зависит от времени и координаты); Cos(ωt –kx) – фаза.

Это уже не гармонический волновой процесс. Если волновых процессов больше, тем уже волновой пакет.

Фазовая скорость V: ωt –kx = const

V=dx/dt=ω/k

Групповая скорость U (скорость перемещения центра энергии группы волн) :

dωt – xdk = const

U = dx/dt = dω/dk

Фазовая скорость не переносит энергию, групповая переносит.

U = dω/dk = d(Vk)/dk = V+ (kdV/dk) = VkdVd λ/d λ dk

λ = 2Pid λ/kdk = - 2Pi/k2

U = V + k (- 2Pi/k2) (dV/d λ) = V – (λdV/d λ) = U

Если dV/d λ > 0 тогда U<V нормальная дисперсия

Если dV/d λ < 0 то U>V аномальная дисперсия.

Если dV/d λ=0 то среда не дисперсирующая

Волновой пакет может перемещаться только в недисперсирующей среде (вакуум?)


Криволинейное движение тела под действием силы тяжести