Квантовая гипотеза Планка Волновая функция и измерения Интегралы движения Туннельный эффект Расщепление спектральных линий в магнитном поле Сферические волны Теория столкновений

Квантовая физика Кинематика Ядерная физика

Электроны в кристаллах

Электропроводность металлов

Квантовомеханический расчет показывает, что в случае идеальной кристаллической решетки электроны проводимости не испытывали бы при своем движении никакого сопротивления и электропроводность металлов была бы бесконечно большой. Согласно корпускулярно-волновому дуализму, движению электрона сопоставляют волновой процесс. Идеальная кристаллическая решетка металла (в ее узлах находятся неподвижные частицы и в ней отсутствуют нарушения периодичности) ведет себя подобно оптически однородной среде - она «электронные волны» не рассеивает. Это соответствует тому, что металл не оказывает электрическому току — упорядоченному движению электронов — никакого сопротивления. «Электронные волны», распространяясь в идеальной кристаллической решетке металла, как бы огибают узлы решетки и проходят значительные расстояния.

В реальной кристаллической решетке металла всегда имеются неоднородности, которыми могут быть, например, примеси, вакансии; неоднородности обусловливаются также тепловыми колебаниями. В реальной кристаллической решетке происходит рассеяние «электронных волн» на неоднородностях, что и является причиной электрического сопротивления металлов. Рассеяние «электронных волн» на неоднородностях, связанных с тепловыми колебаниями, можно рассматривать как столкновения электронов с фононами.

Удельное электрическое сопротивление (ρ) металлов можно представить в виде

ρ = ρколеб + ρприм,

где ρколеб — сопротивление, обусловленное тепловыми колебаниями решетки, ρприм — сопротивление, обусловленное рассеянием электронов на примесных атомах. Слагаемое ρколеб уменьшается с понижением температуры и обращается в нуль при Т = 0 К. Слагаемое ρприм при небольшой концентрации примесей не зависит от температуры и образует так называемое остаточное сопротивление металла, т. е. сопротивление, которым металл обладает вблизи 0 К.

Расчет электропроводности металлов, выполненный на основе квантовой теории, приводит к выражению для удельной электрической проводимости металла

(15.1)

которое по внешнему виду напоминает классическую формулу для σ, но имеет совершенно другое физическое содержание. Здесь п — концентрация электронов проводимости в металле; <ℓF> — средняя длина свободного пробега электрона, имеющего энергию Ферми, <uF> - средняя скорость теплового движения такого электрона, m* - эффективная масса электронов. Выводы, получаемые на основе формулы (15.1), полностью соответствуют опытным данным. Квантовая теория металлов, в частности, объясняет зависимость удельной проводимости от температуры: σ ~ 1/Т (классическая теория дает, что σ ~ 1/√Т), а также аномально большие величины (порядка сотен периодов решетки) средней длины свободного пробега электронов <ℓF> в металле.

Согласно классической теории, средняя скорость теплового движения электронов <u> ~ √T, поэтому она не смогла объяснить истинную зависимость удельной электрической проводимости σ от температуры. В квантовой теории средняя скорость <uF> от температуры практически не зависит, так как доказывается, что с изменением температуры уровень Ферми остается практически неизменным (см. (14.53)). Однако с повышением температуры рассеяние «электронных волн» на тепловых колебаниях решетки (на фононах) возрастает, что соответствует уменьшению средней длины свободного пробега электронов. В области комнатных температур <ℓF> ~ T -1, поэтому, учитывая независимость <uF> от температуры, получим, что сопротивление металлов (R ~ 1/σ) в соответствии с данными опытов растет пропорционально T.

Различие классической трактовки движения электронов проводимости в металле и квантовомеханической трактовки заключается в следующем. При классическом рассмотрении предполагается, что все электроны возмущаются внешним электрическим полем. При квантовомеханической трактовке приходится принимать во внимание, что, хотя электрическим полем также возмущаются все электроны, однако их коллективное движение воспринимается в опыте как возмущение полем лишь электронов, занимающих состояния вблизи уровня Ферми. Кроме того, при классической трактовке в знаменателе формулы (15.1) должна стоять обычная масса электрона т. При квантовомеханической трактовке вместо обычной массы должна быть взята эффективная масса электрона m*. Это обстоятельство является проявлением общего правила, согласно которому соотношения, полученные в приближении свободных электронов, оказываются справедливыми и для электронов, движущихся в периодическом поле решетки, если в них заменить истинную массу m электрона эффективной массой m*.

Экспериментальное подтверждение гипотезы де Бройля. Опыты Дэвисона и Джермера. 1927-1923.

Ускоренные электроны пройдя диафрагму (чтобы пучок был узкий) направляются на монокристалл Ni, происходит отражение (угол отражения = углу падения). Далее попадают в цилиндр Фарадея и на землю.

Оказывается что макс ток будет при условии Вульфа-Бреггов:

2dSinφ=mλ m=1,2,3...

максимум порядка > 1 можно наблюдать :

1)поворачивая кристалл (меняя угол фи)

2)меняя Uускор (ускоренная ? Разность потенциалов – меняет импульс)

T = eUуск

λ = h/sqr(2meU)

схема опыта Тартаковского 1928

(катод, сетка, диафрагма, фольга-поликристалл цилиндр фарадея)

2dSinφ=mλ

на экране наблюдаются дифрагционные кольца. Максимум соответствует условию Вульфа-Бреггов.

Тогда возникает вопрос. Может быть такую картину дают не электроны а рентгеновские лучи? Создали магнитное поле, которое бы нейтрализовала рентген. - диффрагция не исчезла.

Разрешенные и запрещенные электронные энергетические зоны в кристаллах Рассмотрим мысленно «процесс образования» твердого тела из изолированных атомов одного типа

Функции Блоха и зоны Бриллюэна Зонная структура энергетических уровней получается непосредственно из решения уравнения Шрёдингера для электрона, движущегося в периодическом силовом поле.


Криволинейное движение тела под действием силы тяжести