Курсовые и лабораторные по сопромату Подвижный шарнир Балочные системы Пространственная система сил Основные понятия кинематики Растяжение и сжатие Деформации при кручении Сопротивление усталости

Курсовые и лабораторные по сопромату, теоретической механике, машиностроительному черчению

Определение главных напряжений при совместном изгибе и кручении тонкостенной трубы

Ц е ль р а б о т ы: Определение опытным путем величины и направления главных напряжений в поверхностном слое тонкостенной трубы при кручении, а также при одновременном изгибе и кручении, и сравнение их с данными, полученными теоретическим расчетом.


Т е о р е т и ч е с к а я ч а с т ь р а б о т ы. В практике машиностроения часто возникает необходимость расчета тонкостенных стержней замкнутого профиля, например, труб, работающих при кручении, а также при совместном действии изгиба и кручения.

Рис. 3.4. Напряженное состояние в произвольной точке

тонкостенной трубы:

а) при кручении; б) при кручении с изгибом.

В этом случае в любой точке на поверхности трубы возникает плоское напряженное состояние.

При  плоском напряженном состоянии величину и направления главных деформаций (совпадающие с направлениями главных напряжений) можно определить, если измерить линейные деформации на поверхности трубы по трем произвольно выбранным направлениям, используя для этого розетку тензодатчиков, т. е. три тензодатчика 1, 2 и 3 (рис. 3.5), наклеенные на трубу в исследуемом сечении   (на расстоянии  от конца трубы) так, чтобы, например, датчик 2 был параллелен образующей трубы (оси ), а два других расположены к ней под углом 45º.

При изгибе с кручением (рис. 3.4, б) по деформациям  и , измеренным в направлении трех тензодатчиков, вычисляют главные деформации по формулам:

 . (3.7)

 Рис. 3.5. Розетка

Затем, используя обобщенный закон Гука, по найденным значениям   и  вычисляют величину главных напряжений 

 , (3.8)

 

где   - коэффициент Пуассона;

   - модуль продольной упругости

 тензодатчиков материала трубы.

Угол  между осью трубы  и главным напряжением   определяют по формуле:

 . (3.9)

Теоретическим расчетом величину главных напряжений при изгибе с кручением определяют по формуле

 . (3.10)

При этом для вычисления нормальных напряжений  от изгиба и касательных напряжений от кручения используют известные формулы

 , , (3.11)

где   - осевой момент сопротивления сечения (, где  и  - наружный и внутренний диаметры трубы, соответственно);

   - полярный момент сопротивления сечения.

Положение главных площадок теоретически определяют по углу  между направлением  (осью ) и направлением  (рис. 3.4, б) по формуле

 . (3.12)

Критерий удельной потенциальной энергии формоизменения

В качестве критерия прочности в этом случае принимают количество удельной потенциальной энергии формоизменения, накопленной деформированным элементом.

Выразив удельную потенциальную энергию формоизменения через главные напряжения при объемном напряженном состоянии получим:

 (4.4)

Опыты хорошо подтверждают четвертую теорию для пластичных материалов, одинаково работающих на растяжение и сжатие. При этом четвертая теория более точно, чем третья, описывает появление в материале малых пластических деформаций.

3.7.5 Теория Мора

  = (4.5)

где - допускаемое напряжение на растяжение;  - на сжатие.

Теория прочности Мора позволяет установить сопротивление разрушению материалов, обладающих разными сопротивлениями растяжению и сжатию (хрупкие материалы). Опыты показывают, что достаточно точные результаты гипотеза Мора дает для напряженных состояний смешанного типа, то есть для тех случаев, когда главные нормальные напряжения имеют разные знаки.

Таким образом, для практических расчетов следует рекомендовать третью и четвертую теории прочности для материалов одинаково работающих на растяжение и сжатие, и теорию Мора – для материалов, различно сопротивляющихся растяжению и сжатию, то есть для хрупких материалов.


Общие сведения о подшибниках качения