Курсовые и лабораторные по сопромату Расчет стержневой системы Геометрические характеристики сечений Пример расчета трехопорной рамы Зубчатые механизмы Достоинства косозубых передач Техническая механика

Курсовые и лабораторные по сопромату, теоретической механике, машиностроительному черчению

 Определяют геометрические характеристики сечения – осевые, полярный и центробежный моменты инерции сечения относительно центральных осей

;

;

.  (2.7)

Заметим, что площадь, осевые и полярный моменты инерции являются строго положительными характеристиками сечений. Однако, для сечений с отверстиями бывает удобным считать отверстия элементами сечений с отрицательными характеристиками.

Пример. Определить координаты центра тяжести и осевые моменты инерции сечения в виде круга радиусом r =3а с круговым отверстием радиуса r0 = a, касающимся центра круга (рис. 2.2).

Принимаем за 1-й элемент сплошной круг радиусом r =3а, за второй элемент отверстие радиуса r0 = a. Начальные оси проводим через центр тяжести 1-го элемента.

Тогда имеем:

 ;

.

Так как ось р является осью симметрии сечения, так же как и осями симметрии элементов сечения, то эта ось является центральной осью у и . Следовательно, для определения положения центра тяжести сечения требуется определить только координату рс

  .

Координаты центров тяжести элементов относительно центральных осей:

 

Осевые моменты инерции круга относительно собственных центральных осей определяются по формуле 

.

Следовательно, имеем:

 .

Определяем осевые моменты инерции сечения

  ;

.

Так как сечение имеет ось симметрии, то центробежный момент инерции сечения равен нулю и оси у, z являются главными.

 8. Определяем положение главных осей сечения

 Главными осями сечения являются центральные оси, относительно которых осевые моменты инерции достигают максимального и минимального значений и называются главными моментами инерции сечения. Центробежный момент инерции относительно главных осей равен нулю. Положение главных осей определяется поворотом центральных осей на угол a0, определяемый по формуле

 . (2.8)

При этом берется главное значение арктангенса, т.е.

 -90° < 2a0 < 90°; -45° < a0 < 45°.

Главные оси показываются на схеме (чертеже) сечения.

9. Вычисление главных моментов инерции.

Осевые моменты инерции при повороте осей на угол a вычисляются по формулам:

 ;

  ;

 .  (2.9)

Значения главных моментов инерции получаем при подстановке в формулы осевых моментов (2.9) угла a0, определенного по формуле (2.8). Подстановка значение угла a0 в формулу (2.9) для центробежного момента инерции должна дать нулевое значение, что позволяет провести проверку правильности определения угла поворота главных осей.

Определяя значения главных моментов инерции по формулам (2.9) мы одновременно определяем относительно какой оси осевой момент инерции будет иметь максимальное и относительно какой минимальное значение.

Значения главных моментов инерции может быть определено без использования значения угла a0. В этом случае используются формулы:

 . (2.10)

Формула (2.10) не дает ответа относительно какой из двух взаимно перпендикулярных осей главный момент инерции будет иметь максимальное, а относительно какой минимальное значение. Однако можно показать, что из двух главных осей, ось, относительно которой главное значение будет максимальным, будет ближе к центральной оси (у или z) с наибольшим значение осевого момента  (Jy или Jz соответственно).

Так как при повороте осей полярный момент не изменяется то правильность их определения проверяется по формуле

 . (2.11)

Отметим, что знание значений главных моментов инерции и положение главных осей поперечных сечений стержня необходимо при проведении расчетов напряженно деформированного состояния стержней на изгиб, кручение и различные виды сложных видов сопротивления стержней.

Теоретическая механика 

Статика

1. Основные понятия и аксиомы статики

Наука об общих законах движения и равновесия материальных тел и о возникающих при этом взаимодействиях между телами называется теоретической механикой.

Статикой называется раздел механики, в котором излагается общее учение о силах и изучаются условия равновесия материальных тел, находящихся под действием сил.

Абсолютно твердым телом называется такое тело, расстояние между двумя любыми точками которого всегда остается постоянным.

Величина, являющаяся количественной мерой механического взаимодействия материальных тел, называется силой.

Скалярные величины – это такие, которые полностью характеризуются их численным значением.

Векторные величины – это такие, которые помимо численного значения, характеризуются еще и направлением в пространстве.

Сила является векторной величиной (рис. 1).

Рис. 1

Сила характеризуется:

– направлением;

– численной величиной или модулем;

– точкой приложения.

Прямая DЕ, вдоль которой направлена сила, называется линией действия силы.


Разборка редуктора и ознакомление с конструкцией и назначением отдельных узлов