Курсовые и лабораторные по сопромату Расчет стержневой системы Геометрические характеристики сечений Пример расчета трехопорной рамы Зубчатые механизмы Достоинства косозубых передач Техническая механика

Курсовые и лабораторные по сопромату, теоретической механике, машиностроительному черчению

Расчет систем стержней, соединенных с недеформируемым элементом

На рис. 1.5 изображена стержневая система, состоящая из жесткого, недеформируемого стержня АВ, шарнирно опертого в точке А и подкрепленного тремя деформируемыми стержнями. Схема деформирования такой системы определяется возможными перемещениями жесткого элемента. Для рассматриваемой системы (рис.1.5) возможен поворот элемента  АВ, как жесткого диска, вокруг шарнира А. При этом стержни, подкрепляющие жесткий элемент, деформируются.

Неизвестными в заданной системе являются усилия в подкрепляющих стержнях - N1, N2, N3 и реакции в шарнире - RA, RВ. Таким образом, число неизвестных Н = 5. Для плоской системы можно составить У = 3 независимых уравнений равновесия. Следовательно, Л = Н – У = 5 – 3 = 2 - система два раза статически неопределима. 

Для решения задачи необходимо использовать условия неразрывности деформаций. Для составления этих условий в системе с жестким элементом нужно рассмотреть схему ее деформирования. Схема деформирования рассматриваемой системы представлена на рис. 1.6. При определении перемещений узлов системы принимаются следующие положения:

1/ деформации (перемещения) малы, вследствие чего, точки элементов при их вращении вокруг закрепленных (опорных) точек перемещаются перпендикулярно оси элементов в их первоначальном положении;

2/ после деформирования системы углы между элементами не изменяются.

Для заданной системы (рис. 6.1) точки 1, 2, 3 жесткого элемента АВ перемещаются вертикально. При этом, очевидно, что перемещения этих точек связаны соотношениями:

 . (1.2.1)

Точки деформируемых элементов, соединенных с жестким элементом, перемещаются соответственно в точки . При этом стержни удлиняются (или укорачиваются). Процесс деформирования первого и второго стержней можно разложить на два этапа (рис. 1.6 - узлы 1, 2): 

1-й этап - поворот стержней вокруг неподвижных точек О1 и О2 - точки 1, 2 переходят в положение  и  соответственно;

 2-й этап – удлинения (укорочение) стержней - точки ,  переходят в положение  и  соответственно. 

Из схемы деформирования видно, что удлинения стержней определяются по формулам:

; . (1.2.2) 

 


В формулах (1.2.2) удлинения стержней выражены через один общий параметр - u1. Эти формулы являются уравнениями неразрывности рассматриваемой стержневой системы с жестким элементом. Знак минус в формуле деформации  D2 2-го стержня соответствует сжатию (укорачиванию) этого элемента.

Удлинениям стержней соответствуют растягивающие (сжимающие) усилия в стержнях:

 . (1.2.3)

Используя отношения Nk к N1, выразим усилия в стержнях через один силовой параметр:

 

И далее, учитывая соотношения (1.2.2) и размеры стержней (см. рис. 1.5), получим:

И, следовательно, имеем

 ; (1.2.4)

Для окончательного решения задачи составим уравнение равновесия – равенство нулю момента относительно точки А ( при этом из уравнения исключаются опорные реакции - VA  и HA)

;

С учетом формул (1.2.4) получаем

или 

Откуда

кН;

кН;

кН.

Вычисляем напряжения в стержнях;

МПа;

МПа;

МПа.

Понятие о ферме. Расчет ферм

Фермой называется жесткая конструкция из прямолинейных стержней, соединенных на концах шарнирами (рис. 12).

Рис. 12

Если все стержни фермы лежат в одной плоскости, ферма называется плоской.

Места соединения стержней фермы называют узлами.

Наклонные стержни называются раскосами, вертикальные – стойками.

Расстояние между двумя опорами называется пролетом.

Расчет ферм выполняется двумя методами:

1) метод вырезания узлов, который сводится к последовательному рассмотрению условий равновесия сил, сходящихся в каждом из узлов фермы;

2) метод сечений (метод Риттера), который состоит в том, что ферму разделяют на две части сечением, проходящим через три стержня, в которых требуется определить усилие, составив уравнения равновесия.


Разборка редуктора и ознакомление с конструкцией и назначением отдельных узлов