Курсовые и лабораторные по сопромату Расчет стержневой системы Геометрические характеристики сечений Пример расчета трехопорной рамы Зубчатые механизмы Достоинства косозубых передач Техническая механика

Курсовые и лабораторные по сопромату, теоретической механике, машиностроительному черчению

Балочные системы.

Определение реакций опор и моментов защемления

Иметь представление о видах опор и возникающих реакциях в опорах.

Знать три формы уравнений равновесия и уметь их использовать для определения реакций в опорах балочных систем.

Уметь выполнять проверку правильности решения.

Виды нагрузок и разновидности опор

Виды нагрузок Изгиб с кручением Это такой случай нагружения, когда в ПС возникают изгибающие и крутящий моменты. Такое нагружение характерно для валов. Особенностью изгиба с кручением является необходимость применения одной из теории прочности для проведения расчетов на прочность.

По способу приложения нагрузки делятся на сосредоточенные и распределенные. Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосредоточенной.

Часто нагрузка распределена по значительной площадке или линии (давление воды на плотину, давление снега на крышу и т.п.), тогда нагрузку считают распределенной.

В задачах статики для абсолютно твердых тел распределенную нагрузку можно заменить равнодействующей сосредоточенной силой (рис. 6.1).

Рис.

где q — интенсивность нагрузки; / — длина стержня;

G = ql — равнодействующая распределенной нагрузки.

Разновидности опор балочных систем

Балка — конструктивная деталь в виде прямого бруса, закрепленная на опорах и изгибаемая приложенными к ней силами.

Высота сечения балки незначительна по сравнению с длиной. Жесткая заделка (защемление) (рис. 6.2)

Опора не допускает перемещений и поворотов. Заделку заменяют двумя составляющими силы RAx и RAy и парой с моментом MR.

Для определения этих неизвестных удобно использовать систему уравнений в виде

  

Каждое уравнение имеет одну неизвестную величину и решается без подстановок.

Для контроля правильности решений используют дополнительное уравнение моментов относительно любой точки на балке, например В:


Рис.

Рис.


Шарнирно-подвижная опора (рис. 6.3)

Опора допускает поворот вокруг шарнира и перемещение вдоль опорной поверхности. Реакция направлена перпендикулярно опорной поверхности.

Шарнирно-неподвижная опора (рис. 6.4)

Опора допускает поворот вокруг шарнира и может быть заменена двумя составляющими силы вдоль осей координат.


Рис.

 Рис.


Не известны три силы, две из них — вертикальные, следовательно, удобнее для определения неизвестных использовать систему уравнений во второй формуле:

  

Составляются уравнения моментов относительно точек крепления балки. Поскольку момент силы, проходящей через точку крепления, равен 0, в уравнении останется одна неизвестная сила.

Из уравнения  определяется реакция RBx.

Из уравнения  определяется реакция RBy.

Из уравнения  определяется реакция RAy.

Для контроля правильности решения используется дополнительное уравнение

При равновесии твердого тела, где можно выбрать три точки, не лежащие на одной прямой, удобно использовать систему уравнений в третьей форме (рис. 6.6):

Рис.

{


Контрольные вопросы и задания

1. Замените распределенную нагрузку сосредоточенной и определите расстояние от точки приложения равнодействующей до опоры А (рис. 6.9).

Рис.

2. Рассчитайте величину суммарного момента сил системы относительно точки А (рис. 6.10).

Рис.

3. Какую из форм уравнений равновесия целесообразно использовать при определение реакций в заделке?

4. Какую форму системы уравнений равновесия целесообразно использовать при определении реакций в опорах двухопорной балки и почему?

5. Определить реактивный момент в заделке одноопорной балки, изображенной на схеме (рис. 6.11).

Рис.

6. Определите вертикальную реакцию в заделке для балки, представленной на рис. 6.11.

Кулачковые механизмы

Кулачковым механизмом называется механизм, в состав которго входит кулачок (звено, рабочая поверхность которого имеет переменную кривизну) (рис. 42).

Рис. 42

Классификация кулачковых механизмов

1. В зависимости от вида относительного движения звеньев:

а) плоские (кулачок и толкатель перемещаются в параллельных плоскостях) (рис. 42а);

б) пространственные (кулачок и толкатель перемещаются в непараллельных плоскостях) (рис. 42б).

2. По видам движения кулачка:

а) с поступательно движущимися кулачками (рис. 43а);

б) с вращающимися кулачками (рис. 42а);

в) с качающимися кулачками (рис. 43б).

Рис. 43


Разборка редуктора и ознакомление с конструкцией и назначением отдельных узлов