Решение примерного варианта контрольной Производная и дифференциал Неопределенный интеграл Вычисление определенного интеграла Двойной интеграл Интегрирование по частям Тройной интеграл Криволинейный интеграл

Задачи курсового, типового расчета по математике. Примеры решений

Замена переменной и интегрирование по частям

Интегрирование выражений, содержащих квадратный трехчлен

Задания для подготовки к практическому занятию

Итак, для вычисления неопределенного интеграла необходимо свести его к табличному, выбирая для этого на каждом шаге одно из трех действий:

- упрощение (разложение на слагаемые),

- замену переменной (включая сюда и внесение под дифференциал),

- интегрирование по частям. Исследование поведения функций одной переменной и построение графиков Признак монотонности функций Линейная и векторная алгебра Аналитическая геометрия Математический анализ Алгоритм вычисления обратной матрицы.Находим определитель матрицы Находим транспонированную матрицу,

Примеры

  - табличный интеграл (вынести )

  - упростить, разделив почленно числитель на знаменатель

  - сделать замену t=-(x2+1) (или внести х под знак дифференциала)

  - берется по частям (u=x, dv=cos(1-px)dx)

Выделение полного квадрата в квадратном трехчлене – способ выбора замены переменной. Для того, чтобы выделить полный квадрат, надо вспомнить формулу сокращенного умножения:

Подчеркнуты два слагаемых, на которые мы будем опираться при выделении полного квадрата. Перепишем равенство:

Пример

Рассмотрим квадратный трехчлен . Прежде всего вынесем за скобки множитель перед х2:

Первые два слагаемых в скобках соответствуют первым двум слагаемым в правой части формулы квадрата суммы. Следовательно, очевидно, . Таким образом, получаем:

.


Решение примерного варианта контрольной работы