Вычислить криволинейный интеграл Поверхностный интеграл Исследовать поведение функции Функции комплексной переменной Векторное поле Решение типовых задач Элементы теории множеств

Задачи курсового, типового расчета по математике. Примеры решений

Задача 7. Дана функция комплексной переменной , где z = x + iy, и точка z0 = – 1 + 3i. Требуется:

представить функцию в виде w = u(x, y) +iv(x, y), выделив ее действительную и мнимую части;

проверить, является ли функция w аналитической;

в случае аналитичности функции w найти ее производную w′ в точке z0.

Решение.

1) Выделим действительную и мнимую части функции:

.

2) Чтобы установить аналитичность функции w, проверим выполнение условий Коши-Римана (10):

Получили:. Условия Коши-Римана выполняются во всех точках, кроме особой точки z = 2i, в которой функции x = 0, y = 2 и функции u(x, y) и v(x, y) не определены. Следовательно, функция  – аналитическая при .

3) Найдем производную функции:

.

Вычислим значение производной функции в точке z0 = – 1 + 3i.

Ответы:

1) ;

2) функция  аналитическая при ;

3) .

ТЕОРЕМЫ ПО ТЕМЕ "ИССЛЕДОВАНИЕ ФУНКЦИИ

И ПОСТРОЕНИЕ ЕЕ ГРАФИКА"

ТЕОРЕМА (о необходимом и достаточном условиях существования наклонной асимптоты кривой   при  или
при )

Пусть функция  определена на . Прямая  – наклонная асимптота для  при  тогда и только тогда, когда 1)  – конечное число; 2)  – конечное число.

Доказательство. () Если  – наклонная асимптота при  ( – числа), то , т.е. . Поэтому  и .

() Из 1) и 2) имеем  и , т.е.  – наклонная асимптота при .

Аналогичные рассуждения при .


Криволинейный и поверхностный интеграл