Вычислить криволинейный интеграл Поверхностный интеграл Исследовать поведение функции Функции комплексной переменной Векторное поле Решение типовых задач Элементы теории множеств

Задачи курсового, типового расчета по математике. Примеры решений

Решение примерного варианта контрольной работы №1

Задача 1. Дана функция z = cos2(2x – y). Требуется:

1) найти частные производные  и ;

2) найти полный дифференциал dz;

3) показать, что для данной функции справедливо равенство: . Нелинейные цепи переменного тока с ферромагнитными элементами

Willfine sms control hunting camera

Решение.

1) При нахождении  считаем аргумент y постоянным:

= (cos2(2x – y)) = 2cos(2x – y)(cos(2x – y)) =

= 2cos(2x – y)(–sin(2x – y))(2x – y) = –2cos(2x – y)sin(2x – y)((2x) – (y)) =

= – 2cos(2x – y)sin(2x – y)(2 – 0) = –sin(2(2x – y))2 = –2sin(4x – 2y).

При нахождении  считаем аргумент x постоянным:

  = (cos2(2x – y)) = 2cos(2x – y)(cos(2x – y)) =

= 2cos(2x – y)(–sin(2x – y))(2x – y) = –2cos(2x – y)sin(2x – y)((2x) – (y)) =

= – sin(2(2x – y))(0 – 1) = sin(4x – 2y).

2) По формуле (1) находим полный дифференциал функции:

dz =  = –2sin(4x – 2y)dx + sin(4x – 2y)dy.

3) Найдем смешанные частные производные второго порядка.

Для того, чтобы найти , дифференцируем  по у:

  =  = (–2sin(4x – 2y)) = [считаем x постоянным] =

= – 2cos(4x – 2y)(4x – 2y) = – 2cos(4x – 2y)(0 – 2) = 4cos(4x – 2y).

Для того, чтобы найти , дифференцируем  по x:

  =  = (sin(4x – 2y)) = [считаем y постоянным] =

= cos(4x – 2y)(4x – 2y) = cos(4x – 2y)(4 – 0) = 4cos(4x – 2y).

Получили:  = 4cos(4x – 2y),  = 4cos(4x – 2y)  .

Ответы: 1) = –2sin(4x – 2y);  = sin(4x – 2y);

2) dz = –2sin(4x – 2y)dx + sin(4x – 2y)dy;

3) равенство  выполнено.

Теорема (необходимое условие существования определенного интеграла )

Если функция интегрируема (по Риману) на отрезке, то она
ограничена на нем.

Доказательство. Пусть  интегрируема на , т.е. существует . Покажем ограниченность функции  на , т.е.

.

Предположим, что  не ограничена на . Тогда

.

При ,   можно построить последовательность :   и . Поэтому можно указать такое
разбиение   отрезка  и провести выбор чисел  так, что интегральная сумма   примет значение больше любого наперед заданного числа, т.е. определение определенного интеграла не выполнится.

Итак, только для ограниченной на  функции  существует интеграл .

Заметим, однако, что не для всякой ограниченной на  функции  существует интеграл, т.е. требование ограниченности функции является НЕОБХОДИМЫМ, но не является ДОСТАТОЧНЫМ условием интегрируемости функции.

Задача . Дана функция z = cos2(2x – y). Требуется: 1) найти частные производные  и ; 2) найти полный дифференциал dz;

Найти частные производные  и , если переменные x, y, и z связаны равенством 4x2 y ez – cos(x3 – z) + 2y2 + 3x = 0.

Дана функция двух переменных: z = x2 – xy + y2 – 4x + 2y + 5 и уравнения границ замкнутой области D на плоскости xОy: x = 0, y = –1, x + y = 3. 

Поверхность задана уравнением z =  + xy – 5x3. Составить уравнения касательной плоскости и нормали к поверхности σ в точке М0(x0, y0, z0), принадлежащей ей, если x0 = –1, y0 = 2.

Дана функция комплексной переменной , где z = x + iy, и точка z0 = – 1 + 3i.


Криволинейный и поверхностный интеграл