Бесплатно открыть заблокированый сайт max24.biz в обход
Вычислить криволинейный интеграл Поверхностный интегралБесплатно открыть заблокированый сайт max24.biz РІ РѕР±С…РѕРґ Исследовать поведение функции Функции комплексной переменной Векторное поле Решение типовых задач Элементы теории множеств

Задачи курсового, типового расчета по математике. Примеры решений

Решение примерного варианта контрольной работы №1

Задача 1. Дана функция z = cos2(2x – y). Требуется:

1) найти частные производные  и ;

2) найти полный дифференциал dz;

3) показать, что для данной функции справедливо равенство: . Нелинейные цепи переменного тока с ферромагнитными элементами

Решение.

1) При нахождении  считаем аргумент y постоянным:

= (cos2(2x – y)) = 2cos(2x – y)(cos(2x – y)) =

= 2cos(2x – y)(–sin(2x – y))(2x – y) = –2cos(2x – y)sin(2x – y)((2x) – (y)) =

= – 2cos(2x – y)sin(2x – y)(2 – 0) = –sin(2(2x – y))2 = –2sin(4x – 2y).

При нахождении  считаем аргумент x постоянным:

  = (cos2(2x – y)) = 2cos(2x – y)(cos(2x – y)) =

= 2cos(2x – y)(–sin(2x – y))(2x – y) = –2cos(2x – y)sin(2x – y)((2x) – (y)) =

= – sin(2(2x – y))(0 – 1) = sin(4x – 2y).

2) По формуле (1) находим полный дифференциал функции:

dz =  = –2sin(4x – 2y)dx + sin(4x – 2y)dy.

3) Найдем смешанные частные производные второго порядка.

Для того, чтобы найти , дифференцируем  по у:

  =  = (–2sin(4x – 2y)) = [считаем x постоянным] =

= – 2cos(4x – 2y)(4x – 2y) = – 2cos(4x – 2y)(0 – 2) = 4cos(4x – 2y).

Для того, чтобы найти , дифференцируем  по x:

  =  = (sin(4x – 2y)) = [считаем y постоянным] =

= cos(4x – 2y)(4x – 2y) = cos(4x – 2y)(4 – 0) = 4cos(4x – 2y).

Получили:  = 4cos(4x – 2y),  = 4cos(4x – 2y)  .

Ответы: 1) = –2sin(4x – 2y);  = sin(4x – 2y);

2) dz = –2sin(4x – 2y)dx + sin(4x – 2y)dy;

3) равенство  выполнено.

Теорема (необходимое условие существования определенного интеграла )

Если функция интегрируема (по Риману) на отрезке, то она
ограничена на нем.

Доказательство. Пусть  интегрируема на , т.е. существует . Покажем ограниченность функции  на , т.е.

.

Предположим, что  не ограничена на . Тогда

.

При ,   можно построить последовательность :   и . Поэтому можно указать такое
разбиение   отрезка  и провести выбор чисел  так, что интегральная сумма   примет значение больше любого наперед заданного числа, т.е. определение определенного интеграла не выполнится.

Итак, только для ограниченной на  функции  существует интеграл .

Заметим, однако, что не для всякой ограниченной на  функции  существует интеграл, т.е. требование ограниченности функции является НЕОБХОДИМЫМ, но не является ДОСТАТОЧНЫМ условием интегрируемости функции.

Задача . Дана функция z = cos2(2x – y). Требуется: 1) найти частные производные  и ; 2) найти полный дифференциал dz;

Найти частные производные  и , если переменные x, y, и z связаны равенством 4x2 y ez – cos(x3 – z) + 2y2 + 3x = 0.

Дана функция двух переменных: z = x2 – xy + y2 – 4x + 2y + 5 и уравнения границ замкнутой области D на плоскости xОy: x = 0, y = –1, x + y = 3. 

Поверхность задана уравнением z =  + xy – 5x3. Составить уравнения касательной плоскости и нормали к поверхности σ в точке М0(x0, y0, z0), принадлежащей ей, если x0 = –1, y0 = 2.

Дана функция комплексной переменной , где z = x + iy, и точка z0 = – 1 + 3i.


Криволинейный и поверхностный интеграл