Задачи курсового, типового расчета по математике. Примеры решений

Электроника
Лабораторные работы
Математика
Контрольная работа на вычисление
интеграла
Задачи типового расчета
Квантовая физика
Постулаты Бора
Квантовый гармонический осциллятор
Щелочные металлы. Уровни энергии
Характеристические рентгеновские спектры
Фотонный газ
Электронный газ и его некоторые свойства
Электроны в кристаллах
Примесная проводимость полупроводников

Сверхпроводимость

Ядерные силы

Деление ядер

Элементарные частицы

Кварки

Поляризация диэлектриков

Применение закона Ампера

Соединение конденсаторов

Кинематика

Криволинейное движение тела
под действием силы тяжести

Квантовая гипотеза Планка

Волновая функция и измерения

Интегралы движения

Туннельный эффект

Расщепление спектральных линий
в магнитном поле

Сферические волны

Теория столкновений
История искусства
Скульптура
Барокко
Вазопись и живопись
Византия
Искусство Древней Японии
Монументальная живопись
Тициан. Представитель венецианской школы
Искусство итальянского барокко
Русская глиняная игрушка
Виды декоративно – прикладного искусства
Модерн
Фовизм
Абстрактное искусство
Постсупрематизм
Сюрреализм
Аналитическое искусство
ВХУТЕИН: (Высший художественно
-технический институт)
Кинетическое искусство
Поп-арт
Акционизм в искусстве
Видео-арт
Московский концептуализм
Социалистический реализм
Советская пейзажная живопись
Тенденции современного дизайна

 

Решение примерного варианта контрольной работы № 1

Решение примерного варианта контрольной работы № 2

Вычисление интеграла

Тройной интеграл

Криволинейный и поверхностный интеграл

  • Криволинейный интеграл
  • Вычислить криволинейный интеграл
  • Вычислить массу дуги кривой () при заданной плотности :
  • Вычислить работу силы  при перемещении единичной массы вдоль кривой  линии пересечения двух поверхностей:  от точки  до точки 
  • Вычислить расходимость (дивергенцию) и вихрь (ротор) в произвольной точке , а также найти уравнения векторных линий поля градиентов скалярного поля .
  • Поверхностный интеграл первого рода Пусть f(x,y,z) - функция, непрерывная на гладкой поверхности S. (Поверхность называется гладкой, если в каждой её точке существует касательная плоскость, непрерывно изменяющаяся вдоль поверхности).
  • Поверхностный интеграл второго рода К понятию поверхностного интеграла 2-го рода приводит физическая задача о вычислении потока жидкости через некоторую поверхность S. При этом, в каждой точке поверхности S задаётся векторная функция (x,y,z) скорости жидкости. Поверхность S называется двусторонней, если нормаль к поверхности при обходе по любому замкнутому контуру, лежащему на поверхности S, возвращается в первоначальное положение. Сторона поверхности S задаётся выбором направления нормали к поверхности, в этом случае поверхность называется ориентированной.

Вычисление функций

Элементы теории множеств Понятие "множество" – неопределяемое понятие. Под множеством понимается "набор", "коллекция", "совокупность" и т.п. отличающихся друг от друга объектов, объединенных каким-либо общим свойством. Предметы или объекты, составляющие множество, называются элементами множества. Обычно множества обозначают большими буквами , а их элементы – малыми буквами  преимущественно латинского алфавита.

На главную